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ABSTRACT
Edge clouds are emerging as a popular paradigm of com-
putation. In edge clouds, computation and storage can be
distributed across a large number of locations, allowing ap-
plications to be hosted at the edge of the network close to
the end-users. Virtual machine live migration is a key mech-
anism which enables applications to be nimble and nomadic
as they respond to changing user locations and workload.

However, VM live migration in edge clouds poses a num-
ber of challenges. Migrating VMs between geographically
separate locations over slow wide-area network links results
in large migration times and high unavailability of the ap-
plication. This is due to network reconfiguration delays as
user traffic is redirected to the newly migrated location. In
this paper, we propose the use of multi-path TCP to both
improve VM migration time and network transparency of
applications.

We evaluate our approach in a commercial public cloud
environment and an emulated lab based edge cloud testbed
using a variety of network conditions and show that our ap-
proach can reduce migration times by up to 2X while virtu-
ally eliminating downtimes for most applications.

CCS Concepts
•Networks→Network performance analysis; Cloud com-
puting; Data center networks; •Software and its engi-
neering→ Cloud computing; •General and reference→
Empirical studies;

1. INTRODUCTION
Cloud computing has emerged as a popular paradigm for

hosting a variety of online applications and services. Today’s
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commercial cloud computing platforms employ a
quasi-centralized architecture, where cloud resources such
as servers and storage are hosted in a few large global data
centers. While doing so provides economies of scale and
statistical multiplexing of resources across a large customer
base, it usually implies hosting a cloud application at a cloud
site that may be "distant" from its end-users.

Recently a new architecture for cloud computing has
emerged that is based on the principle of edge computing—
where cloud resources such as servers and storage are dis-
tributed in small clusters at a large number of edge cloud
locations. Applications can be hosted at the edge of the net-
work closer to their end-users to minimize latency.
Cloudlets [39] and others [7, 11, 35] have advocated such
a distributed edge cloud model. Edge clouds can also be
viewed as a natural evolution of content delivery networks
(CDNs) that rely on servers and storage at edge locations to
deliver content such as video. In the case of edge clouds,
edge locations host full-fledged applications rather than just
data.

The growing popularity of mobile phones and Internet
of Things (IoT) devices has made edge clouds an attractive
choice for running emerging mobile and IoT services. Since
these devices are often resource constrained, they can rely on
computation and storage at nearby edge cloud servers to im-
plement their services (e.g. computational offloading [5, 14,
21]). Furthermore, edge clouds can provide low-latencies
(due to their proximity to mobile or IoT Devices) enabling
applications such as mobile multiplayer games or IoT ap-
plications with actuation and tight control loops where low
latency is a key requirement.

Edge clouds are poised to enable a slew of novel applica-
tions with new requirements. Consider a mobile phone that
runs mobile applications (e.g. Kinect style gesture recogni-
tion) that offload resource-intensive computations to a nearby
edge cloud. As the user travels from home to work and
back, the nearest edge cloud to the current phone location
will change over the course of the day. To provide the low-
est latency, the edge cloud VMs that support computational
offload will need to “follow the user” and transparently mi-
grate to a new edge cloud location whenever the user changes
location. Similarly, cloud-based virtual desktops— cloud-
based VMs that provide a desktop PC accessed through thin
clients on mobile devices [17] will also need to be migrated



to different edge cloud sites to continue providing low-latency
access in the presence of user nomadicity. Researchers have
also advocated “follow the sun” [36, 40] applications where
a global team of users collaboratively work on a task using a
cloud-based application—as the sun rises on each continent,
the cloud application is migrated to a new edge location to
provide low latency access to team members on that con-
tinent. Finally, multi-user applications such as online mul-
tiplayer games may be replicated at multiple edge sites and
replicas may be migrated within each region to optimize per-
formance as the user base changes over time.

The ability to transparently move the running state of an
edge cloud application from one edge cloud location to an-
other is key to enabling the above scenarios. Assuming edge
cloud servers are virtualized, a simple approach may be to
live migrate the VM [13] and its associated state from one lo-
cation to another. However, live VM migration, which was
developed for LAN migration within a data center, suffers
from two key limitations in the WAN scenario. First, the VM
network IP addresses will change across WAN edge cloud
sites, which is no longer transparent to end devices (phones,
tablets, and IoT devices) that may be actively accessing the
VMs services. Second, bandwidth between edge cloud sites
is likely to be more constrained than LAN bandwidth, which
increases migration costs. There has been some limited work
on WAN VM migration [23, 36, 40] but these systems use
network tunneling or require explicit support from the net-
work, which limit broader deployment.

Our approach relies on multi-path TCP [32], which is now
widely available in server [33] and mobile OS platforms (e.g.
Linux [30], Android, Apple iOS [3]). Multi-path TCP relies
on the presence of multiple network interfaces on clients and
servers to send and receive TCP data in parallel over multiple
network paths. We use MPTCP to speedup VM migrations
and to mask the effect of IP address changes due to WAN
VM migration.

Our approach also tackles many of the practical challenges
presented in edge-cloud scenarios that are not addressed by
existing work on VM migration. A key feature of our ap-
proach is that it relies solely on the end-hosts, and does
not depend on support from the underlying network. Past
work on maintaining network transparency during VM mi-
grations relies on using tunneling and Software Defined Net-
works [36, 40]. In edge clouds that can span multiple inde-
pendent heterogeneous networks, relying on the underlying
network to provide such functionality may not be practical.
The second challenge posed by edge clouds is the variance in
the parameters of WAN links such as bandwidth, round-trip-
time, and congestion. We study the effect of this variance,
and show that our approach is robust in the face of network
heterogeneity and variations.

In developing a multi-path approach to wide-area network
VM live migration, we make the following contributions:
MPTCP-Based Virtual Machine Migration We show how
multi-path TCP can improve live migration times by allow-
ing the hypervisor to take advantage of the increased aggre-
gate bandwidth. This enables our system to speed up the
transfer of disk and memory state and complete migrations

in about half the time of a regular TCP migration.
Network Transparency for VM Clients Traditional WAN
migration processes rely on techniques such as network tun-
neling that increase the downtime and latency that end users
perceive during VM migrations. This is not suited to edge
cloud environments, where the goal is to migrate VMs to
decrease client perceived latency. Our system lowers client
perceived latency and increases after-migration throughput
by using MPTCP to notify clients of the migrated VMs new
network address and switching them to the new address while
still maintaining active connections.
Wan-Optimized Pre-Copy Algorithm Edge cloud VM mi-
grations for non-well provisioned sites may take on the order
of 10’s of minutes rather than the seconds of traditional LAN
environments. As a result of longer migration times, tradi-
tional optimizations for pre-copy algorithms may not be suit-
able. We propose hot-skip, a new pre-copy algorithm opti-
mized for edge cloud WAN environments that groups mem-
ory pages by historical write frequency, and reduces migra-
tion time by 20% compared to existing KVM live migration.
Prototype and Experimentation Across Public and
Emulated Clouds
We implement our migration system as a prototype wrapper
script for KVM hypervisor. We evaluate the performance of
our prototype on the IBM SoftLayer network as well as in a
lab based edge cloud emulator testbed for a wide variety of
edge cloud conditions. We show that our system decreases
migration times by 50% and improves after-migration through-
put anywhere from 12% to 60% depending on client distance
to edge cloud locations.

Thus, our approach provides a WAN VM migration that
offers easy deployability, bandwidth aggregation, end-point
transparency, and a WAN optimized pre-copy algorithm.

2. BACKGROUND
In this section, we present background on edge clouds,

virtualization and migration, and multipath transport proto-
cols.

2.1 Edge Clouds
An edge cloud provides cloud resources such as comput-

ing and storage from multiple locations at the edge of the
network, specifically to provide low-latency and high band-
width access to end users. As noted in Section 1, edge clouds
are particularly well suited for mobile users and IOT devices
and others (e.g. Cloudlets [39], fog computing [7], compu-
tational offloading [5, 14, 11]) have argued for such archi-
tectures.

In this paper, we assume an edge cloud architecture where
clusters of storage and computation are deployed at hun-
dreds or thousands of locations distributed across a large ge-
ographic region (Fig 1). We further assume that edge cloud
platforms offer a similar abstraction to traditional central-
ized cloud platforms—a customer may request compute or
storage resources at one or more locations and the cloud
platform will provide virtualized resources to the applica-
tion at the chosen location(s). Unlike CDNs [29] that host
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Figure 1: Computation and storage resources are located
at multiple sites close to the users.

and deliver content, an edge cloud can host any arbitrary ap-
plication inside virtual machines and provide online services
using computational and storage resources at the edge.

2.2 Virtualization in Edge Clouds
As shown in Figure 1, each edge cloud server is assumed

to be virtualized and can host one or more virtual machines
that run end-user applications. We assume that the “con-
trol plane” of the VMs extends across the edge cloud loca-
tions. That is, identity management, access control, security
groups etc., can all be either migrated along with the VM,
or are already available across all edge cloud locations via
some consistent distributed storage. Given the large num-
ber of edge locations, initial placement of a customer’s VM
depends on the location of the end-users— typically VM(s)
are placed at a nearby edge cloud site to reduce latency and
maximize bandwidth from end-devices to the cloud-hosted
application.

Edge cloud workloads, however, are expected to be more
dynamic than traditional cloud workloads due to their focus
on mobile users and devices. Mobile users are nomadic and
thus change locations frequently. Similarly, IOT workloads
may see skews in when and where interesting events may be
observed, requiring computational resources to be dynami-
cally provisioned at those locations.

An edge cloud can react to these dynamics by contin-
uously adjusting the locations where application VMs are
placed. This can be achieved by dynamically instantiating
application replicas at new edge locations or by migrating
an application’s VM(s) from one edge location to another.

Provisioning additional replicas at new locations can be
done similarly to current cloud platforms. However, migrat-
ing an application between edge cloud locations poses many
challenges (and is not supported by today’s cloud platforms).
First, doing so involves migrating the VM’s memory and
disk state from one edge cloud location to another. While
VM migration on a LAN (i.e. from one server to another at
the same cloud location) is well understood [13], WAN VM
migrations are not. Live VM migration in a LAN assumes
that the IP address of the VM remains unchanged after the
migration and thus all active network socket connections be-
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Figure 2: Standard TCP vs. Multi-Path TCP network
connections. MPTCP allows a single socket connection
to be multiplexed over multiple network interfaces, and
allows a single connection over multiple paths.

tween client devices and the VM are unaffected. In WAN
migration, the VM IP changes to that of the new cluster at
the new site, which makes it challenging to maintain net-
work transparency to end-clients. In an edge cloud where
minimizing access latency is critical, client perceived down-
times during migrations also need to be minimized.

Bandwidth between edge cloud locations may be more
constrained than LAN bandwidths and can vary widely de-
pending on how network links between edge cloud clusters
are provisioned. Lower bandwidths increase migration la-
tency and can also increase data transfer overheads (since
data that is actively changing may need to be re-sent mul-
tiple times). The problem is exacerbated in the WAN case
since migration latencies are much larger.

Efficient support for VM migration between edge cloud
locations needs to address these challenges.

2.3 Multipath Transport Protocols
Todays servers have multiple network interfaces. Simi-

larly, end-devices such as mobile phones have multiple in-
terfaces (e.g. WiFi, cellular, etc.) for communication. A
multipath transport protocol exploits the presence of mul-
tiple network paths between two servers, or a server and a
client. In this case, network packets between socket end-
points are sent over multiple network interfaces (rather than
a single interface in a traditional socket) and the data can
traverse over multiple paths to the destination (Figure 2).

Using multiple paths for a single connection has many
advantages. The first is improved reliability, since network



problems over one interface or path can be masked by other
interfaces and paths. Multi-path transport protocols are also
able to dynamically adapt to congestion and other path-health
metrics, and send data on multiple paths based on their suit-
ability. The second advantage is that multi-pathing provides
link-aggregation and the ability to send data on the multiple
paths. This increases the effective bandwidth available for
data flows. Thus, applications can speed up data transfers by
utilizing the bandwidths offered by multiple paths.

An implementation of multi-path network connections al-
ready exists in the form of MPTCP [33]—a multi-path ver-
sion of TCP. MPTCP is a proposed [15] protocol extension
to TCP. Many widely used operating systems such as Linux
and Android now support MPTCP with a kernel patch, and
Apple’s iOS is deployed with built-in support for MPTCP.
MPTCP is implemented as a set of TCP options, which al-
low two endpoints to simultaneously use multiple paths—
also known as subflows between them [15]. These subflows
are defined logically, by default, by all end-to-end interface
pairs. For example, if each endpoint in a conversation has
two interfaces, MPTCP can create up to four subflows. MPTCP
has many benefits: First, it is transparent to user applica-
tions. The MPTCP layer is hidden from user applications
by providing a standard TCP socket. Existing TCP appli-
cations need not be modified to take advantage of MPTCP.
Second, by utilizing multiple subflows, MPTCP can natu-
rally achieve throughput equivalent to the best individual
subflow, and sometimes even higher bandwidths. Finally,
resilience is improved since no one path is a single point
of failure. MPTCP can dynamically migrate traffic between
paths in response to changing network conditions.

MPTCP communicates control information through new
TCP header extensions, which announce multipath capabil-
ity, available interfaces, and set up and tear down subflows.
Once an MPTCP connection is initiated, each end host knows
at least one of its peer’s IP addresses. If a client wishes to
create an additional subflow over another interface that it has
(e.g., a cellular NIC), it can send another SYN packet with
a JOIN option containing the IP of the NIC to the server’s
known IP address. This subflow becomes associated with
the currently established MPTCP connection.

As many clients are behind Network Address Translators
(NATs), it is difficult for the server to send a JOIN packet
to the mobile client as NATs usually filter out unidentified
packets [33]. Instead, if a server also has an additional inter-
face, the server sends an Add Address option to inform the
client of the available address. Once the client receives it, it
can send another SYN packet with the JOIN option to the
server’s newly announced IP address, creating a new sub-
flow [16]. In MPTCP, the client is defined as the endpoint
that sent the original SYN packet. Our approach exploits
MPTCP to address WAN migration challenges of network
transparency and bandwidth constraints in edge clouds.

3. VM MIGRATION IN EDGE CLOUDS
We now explain the inadequacies of current migration tech-

niques for edge clouds and then present the intuition behind
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our approach, followed by our migration algorithm.

3.1 Why are existing VM migration
techniques inadequate?

We now provide an overview of the state of the art in LAN
and WAN VM migration and argue that these methods are
inadequate for edge clouds.
LAN Migration. Figure 3 depicts the steps involved in
LAN-based live VM migration. Live migration of memory
is one of the key challenges in LAN migration [13, 27, 34],
since in many scenarios the disk state of the VM is acces-
sible at both the source and destination machines (e.g. via
shared storage). The first stage of the migration is called it-
erative pre-copy, which iteratively copies the memory pages
of the VM from the source to destination servers. Since the
application continues to run uninterrupted during this stage,
memory pages may get dirtied after they are copied. Hence,
after each round, all newly dirtied pages are re-sent in the
next round. The iterative process continues until the residual
dirty state is "small"—at this point, the source VM is paused
and the residual state is sent over. The destination VM can
resume execution from where the source VM paused.
WAN Migration. In the WAN case, the IP address of the
VM can not be retained, since the destination machine is part
of a different network subnet; maintaining network trans-
parency is therefore more challenging. Current approaches
[23, 38, 40] all require extending the layer 2 network over
the WAN. As shown in Fig 4, existing and future clients
continue to send network traffic to the old IP address at the
source machine, which forwards it over a network tunnel
to the VM’s new IP address at the destination. This trian-
gle routing can add significant additional delay between the
client and the VM, and reduces available bandwidth. This
is particularly detrimental in the edge cloud scenario since
VM’s may migrate to a new edge cloud location to reduce la-
tency to end-users, while the triangle routing actually wors-
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ens it further.
Bradford et. al. [8] propose an approach that uses tunnel-

ing only for current clients and updates DNS records for the
VM to allow future clients to directly connect to the VM’s
new IP address. However, DNS updates can be slow to prop-
agate and existing long-lived network connections will still
suffer from triangle routing and tunneling delays. Cloud-
Net [40] uses VPN technology to keep the IP address of the
VM unchanged at the destination, which eliminates these
drawbacks. But it requires router support to implement its
migration method, which limits general use.

Thus, current WAN migration methods either degrade
client-edge cloud latency or require router support to main-
tain network transparency. Further, current approaches only
focus on network transparency and have not considered the
impact of lower WAN bandwidth (and larger migration la-
tency). Larger latencies may increase the amount of dirty
data and negatively impact the pre-copy stage of the migra-
tion. Finally, disk state of the VM may also need to be mi-
grated in addition to memory state when shared storage is
not available across edge cloud sites. These limitations mo-
tivate a new approach for VM migration that is tailored for
edge clouds.

3.2 MPTCP-based Migration Approach
Our approach exploits multipath transport to overcome

both the network transparency and bandwidth limitations of
WAN VM migrations for edge clouds. Since MPTCP is now
available on major server (e.g. Linux) and mobile (e.g. iOS)
operating system platforms, our approach is easy to imple-
ment and deploy using current systems.

We assume that each edge cloud server has at least two
network interfaces and cloud VMs hosted by these servers
have two or more logical network interfaces. This is a rea-
sonable assumption since most commodity server configu-
rations ship with dual or quad port ethernet cards and VMs
on commercial clouds have at least two logical network in-
terfaces (e.g. public and private IPs for Amazon EC2 cloud
VMs). We further assume client devices use MPTCP.

To address the bandwidth constraints, our VM migration
techniques simply uses MTCP between the sender and the
destination machines as shown in Fig 5. The use of multiple
paths to migrate the memory and disk state parallelizes the
data transfer and increases the bandwidth available during
migration and reduces network latency. As shown in our

experiments, MPTCP often doubles the available bandwidth
during the migration.

However, even with the use of MPTCP, the WAN band-
width available on the network paths between edge cloud
sites may be more constrained than LAN bandwidth. Hence,
we present a new pre-copy algorithm for migration that is
tailored for WAN scenarios. Our algorithm tracks the dirty
rates of memory pages (or disk blocks) across iterations and
only sends the coldest pages. This decreases the length of
iterations and reduces the chance that a page that was al-
ready sent was dirtied, thus reducing overall migration time.
To further reduce data transfer overhead, especially for disk
transfers, our algorithm can proactively copy disk snapshots
to possible candidate locations and only send deltas in case
the VM moves to those machines. In cases where a VM may
migrate back to an old location, retaining previous disk state
and sending a delta also saves migration overhead. Together,
our WAN-optimized data copying algorithm and multipath
transfers address bandwidth issues in edge cloud migrations.

We also use MPTCP to address network transparency af-
ter a WAN migration. Our technique uses two logical NICs
on a VM, one active and the other inactive. All network con-
nections use MPTCP and are configured to use both NICs–
since only one logical NIC is active, only that one is actu-
ally used. After a migration, the other logical NIC is acti-
vated with a new IP address and the first NIC is then deacti-
vated. Doing so causes MPTCP sockets at all client devices
to seamlessly switch to using the new interfaces and stop
sending over the old interface. Thus, all TCP connections
remain active despite an IP address change at the VM.

3.3 Edge Cloud Migration Algorithm
We now present our migration algorithm. We assume that

both the VM and the host machines have at least two NIC’s.
To avoid confusion we refer to the physical NICs on hosts
as NIC1 and NIC2 and the logical NICs of the VM as vNIC1
and vNIC2. Our edge cloud migration involves six phases:
Phase 1: Tunnel creation and routing preparation
As a first step, we create a tunnel between the source and
destination hosts and prepare the routing tables for both in-
coming and outgoing traffic of the VM at the destination.
Although this tunnel is not used until phase 4, we pre-create
this network state to reduce client-perceived downtime when
switching the VM from source to destination, which is im-
portant for maintaining network transparency. We specifi-
cally enable proxy-arp, create route entries to and from the
VM and install ebtable rules for the tunnel and routing
setup.
Phase 2: Migrate disk state of the VM
Next, we migrate the disk state (i.e. virtual disk) of the VM.
This phase is necessary only if there is no shared storage
between the two edge cloud sites. If shared disk storage (or a
distributed file system) is available, the disk state can simply
be shared with the new machine and need not be migrated.

The disk state, which can be substantial, is migrated by
performing a block by block copy over a MPTCP connec-
tion between the source and destination hosts. Since the
VM continues to execute, data blocks may be modified af-



ter they have been sent, and iterative copying will be neces-
sary to resend modified disk blocks. The disk migration over
slow WAN links can be optimized using three mechanisms.
First, MPTCP itself parallelizes the transfers over multiple
network paths and increases the bandwidth available for the
migration. Second, by sorting disk blocks by their write fre-
quency and sending blocks in increasing order of write fre-
quency, we can reduce the data that needs to be retransmitted
to the destination. Alternatively, blocks may be sent based
on their dirty rate, with higher frequency blocks not being
sent until the end. The write frequency or age of a block is
derived from that of the file to which it belongs. Third, data
deduplication [2, 18] techniques can be used to reduce the
data transfer overheads.
Phase 3: Migrate the Memory State of the VM
Migration of memory state of the VM begins when most of
the disk state has been migrated. 1 Our memory migration
uses an iterative pre-copy approach that is tailored for WAN-
based edge cloud environments by skipping the hottest pages
to reduce the duration of iterations (Section 3.3.2).
Phase 4: VM Switchover
At the end of phase 3, both disk and memory state of the
VM have been migrated. The VM at the destination then
takes over and resumes execution from where the source VM
was paused. The tunnel from the source to destination is
activated.

At this point, clients continue to send network traffic to the
VM’s old IP address that is associated with the source ma-
chine and this traffic is forwarded over the tunnel to the VM
at the destination. Thus, all network connections stay active,
albeit with a larger round trip latency due to tunneling.
Phase 5: MPTCP-based Network Switchover
Next, the inactive second interface of the VM (vNIC2) is
activated and given a new IP address belonging to the sub-
net at the destination edge cloud. Routing tables are also
configured so both interfaces can be used simultaneously.
Traffic to and from the second interface (vNIC2) does not
traverse the tunnel. MPTCP naturally advertises the newly
acquired IP address in the existing connections and creates
new subflows. Once the new subflows are established, the
other original interface, vNIC1, is deactivated and the tunnel
is torn down. This causes all end-clients to send MPTCP
traffic directly to the new IP address at vNIC2. Doing so op-
timizes latency from end clients to the VM’s new edge cloud
location.
Phase 6: Normal Operation
The VM is now back in a normal state, similar to where it
was prior to the migration, except that it is now at a new edge
cloud location and in a different subnet. If the VM needs to
migrate again, the same process is used, except that roles of
the two logical NIC’s vNIC1 and vNIC2 are reversed.

3.3.1 Optimizing Disk Migration Overheads
Since a VM’s disk state can be quite large, migration of

the disk state can dominate the total migration latency. Phase
2 of our migration algorithm employs several optimizations

1Disk and memory state is migrated simultaneously.

to speed up the disk migration.
In scenarios where it is possible to predict the future lo-

cations of an edge cloud VMs or when the VM "hops" be-
tween the same set of locations, additional optimizations are
possible. If the future location of a VM can be predicted, a
snapshot of the VMs disk can be transferred to one or more
candidate locations well in advance of the migration. In this
case, only a delta of the disk state that was modified after the
snapshot needs to be migrated in phase 2. Since only a small
portion of disk files are modified over the course of hours or
days, this can drastically reduce the migration of disk state.

Similarly, if the VM hops between known locations (e.g.
follow the user, where a user moves from home to work and
back or follow the sun scenario) then the disk state at the
source machine is not deleted after migration. When the VM
migrates back to this location, only a delta is copied back.

3.3.2 WAN-optimized Pre-copy Algorithm
The iterative pre-copy approach used in most hypervisors

such as KVM is suited for LAN environments where the
network bandwidths are high enough that the state of VMs
can be copied over in under a minute. WAN bandwidth can
be several orders of magnitude lower than inter-data center
bandwidth. This reduction in bandwidth is particularly detri-
mental to the migration process.

In the pre-copy migration approach, the hypervisor itera-
tively identifies and sends the remaining dirty pages over the
network. The page dirty rate is only bound by the memory
bandwidth, which can be several hundred Gbps and thus sev-
eral orders of magnitude higher than network bandwidth. To
be able to completely migrate a VM, pre-copy approaches
assume that the writable working set of a VM—the pages
that are part of its working set that see frequent writes, is
small.

The reduced WAN bandwidth thus increases the time re-
quired for migration, as the hypervisor takes longer to send
dirty pages, thereby increasing the time between successive
iterations. This increased iteration time has a compounding
effect—with longer iterations, more pages are likely to be
dirtied in the successive iteration. Thus the reduced band-
width not only increases migration time due to slow network
transfer rates, but also increases the amount of data (dirty
pages) that is to be transferred.

To address the steep increase in migration time due to
low bandwidths, we propose a modified pre-copy algorithm
which reduces the pages sent (and hence the total migration
time) in WAN environments. The key idea in our algorithm
is to reduce the number of pages sent in an iteration, by not
sending the “hot” pages. Hot pages are those that see a lot
of write traffic, and are highly likely to be dirtied in the next
iteration. Thus sending hot pages in initial iterations only in-
creases the iteration time and the compounding effect of the
increased number of dirtied pages in subsequent iterations.
During each iteration, we identify the dirty pages, and divide
them into two classes, hot and cold, and we only send the
cold pages. This keeps iterations short and reduces total mi-
gration time. We call our approach the “hot-skip” approach
because it skips and does not send the hot pages. To en-



sure that the migration process converges, we ensure that the
number of skipped hot pages is monotonically decreasing.
Hot-pages are identified either using a thresholding scheme
(top 10% most frequently written pages are hot), or by us-
ing other memory-profiling techniques [41] which allows the
threshold to be determined based on the application behav-
ior.

We identify hot and cold pages based on their long-term
write frequency, which we record across all iterations based
on the dirty bitmap. Our approach is similar to the skip-list
approach used in Xen’s live migration [13, 25] that skips
twice-dirtied pages in an iteration. However, our approach
is different in the sense that we consider long-term history
when classifying pages as hot and cold. In contrast, skip-
lists “forget” a page’s history after the current iteration.

3.4 System Implementation
We have implemented a prototype of our transparent WAN

migration system in the KVM hypervisor. Our implementa-
tion is split into three main parts: the hypervisor, a migration
manager, and the guest operating system in the VM.
Hypervisor. Our migration approach relies on using MPTCP
for migrating VM state. Since the hypervisor (KVM version
2.0 in our case) performs the actual migration of the VM, it
must have the ability to use MPTCP-backed sockets. Migra-
tions in KVM are performed by the userspace QEMU layer,
and open a standard TCP socket. QEMU runs on top of
Linux, and we use an MPTCP enabled Linux kernel (version
3.13) by using kernel patches for MPTCP version 0.91 [30].
This allows the QEMU migration process to use MPTCP
and to be able to send the VM state over multiple network
interfaces and increase the effective bandwidth.

We observed that MPTCP throughput is highly depen-
dent on the TCP window sizes, much more so than stan-
dard TCP [32]. We tune the kernel TCP window buffers,
net.ipv4.tcp_rmem and net.ipv4.tcp_wmem, ac-
cording to RFC 6824 [16] with a value of 60 MB which
is roughly twice the sum of the available bandwidths mul-
tiplied by the highest RTT value. We do not use MPTCP
checksumming so as to reduce its CPU overhead [33]—this
does not affect checksumming of the TCP subflows, which
are still checksummed. We use the default MPTCP coupled
congestion control algorithm, LIA (Linked Increases Algo-
rithm). LIA is based on TCP Reno, and we use Reno for
TCP congestion control to provide a fair comparison.
Migration Manager. The migration manager is a user-space
software component that runs on both the source and desti-
nation hosts. It interacts with the QEMU migration thread
and is primarily responsible for updating the network con-
figuration at both ends to ensure network transparency.

The migration manager is implemented as a wrapper perl
script around the regular migration process. Our script reads
a configuration file with the VM and networking details. The
configuration file includes the following details: the source
and destination host IP addresses, the destination hostname,
the virtual machine name, the VM’s current networking de-
tails (IP address, gateway, interface name), and the VM’s fi-
nal networking details (IP address, IP prefix, interface name).

We then proceed through the steps outlined in Section 3.3.
We use the VM networking details to establish ebtable
rules for routing packets once the VM is at the destination
server. During stage 2, we use the destination host IP ad-
dress to establish the disk state at the destination by pre-
copying a snapshot. In stage 3, we use the VM name and
destination IP to migrate the VM using virsh. In stage 4,
a time critical step, we use the VMs network configuration
with ebtables [1] to change the network routes so that pack-
ets are forwarded through our pre-established tunnel. Fi-
nally in stage 5, we use the specified network interfaces to
decide which interface to activate and deactivate after migra-
tion completes.
Virtual Machine Guest OS. Finally, our approach also re-
quires that the guest operating system use MPTCP, and for
that we again use an MPTCP patched Linux kernel. This en-
sures that all applications running inside the VM use multi-
ple vNICs and MPTCP. Other than an MPTCP-enabled ker-
nel, our approach requires no other application modification.

Our approach requires that both the hypervisor and the
VM have multiple network interfaces. The hypervisor can
easily create multiple vNICs for each VM. Since we use
MPTCP in the VM for endpoint-transparency, we note that
the VM does not actively use the multiple interfaces during
regular operation. Instead, we use MPTCP’s “backup mode”
so that the traffic of the TCP connections falls back to the al-
ternate interfaces during the migration.

Our implementation was successfully tested on EC2, Ama-
zon, the IBM SoftLayer cloud, as well as our lab based em-
ulated edge cloud testbed.

4. EVALUATION
In this section, we present our results when MPTCP is

used by the hypervisor and the VM as the default transport
protocol for network activity. We first describe our exper-
imental environment including the commercial distributed
cloud, emulated edge cloud testbed, hardware, software and
metrics. We then present our evaluation of MPTCP. Our ex-
periments are designed to evaluate the following aspects of
VM State migration over MPTCP for edge clouds:
• How quickly can we migrate memory and disk state?
• How do varying bandwidth and RTTs affect migration?
•What are the benefits of our proposed optimizations for

reducing memory and disk copy overheads?
•What is the effectiveness of our MPTCP-based switchover

while maintaining network transparency?

4.1 Environment and Methodology
We shall use the following metrics :

• Application throughput: For network intensive applica-
tions, we are interested in seeing what effect our migration
approach has on their throughput.
•Migration time: The total time the migration process takes.
This dictates how quickly VMs can completely migrate to
different edge cloud locations.
• Application downtime: Since migration can cause a tem-
porary loss in network connectivity, it can cause the applica-



Figure 6: IBM SoftLayer cloud data center locations in
North America. We migrate VMs from Montreal to ei-
ther San Jose or Dallas.

tion to face downtimes. We evaluate the downtime by using
packet traces during the migration obtained using tcpdump.
We define the start of the downtime as the time we observe
the last packet sent by the VM that does not traverse the tun-
nel, and the end of the downtime as the time we observe the
first packet sent from the VM on the tunnel.
• Loss Rate: In addition to downtime, we also measure the
packet loss rate during migration to quantify the disruptive
effects of migration.

Workloads. We use two approaches to evaluate our sys-
tem’s performance at the host and guest levels. To evaluate
throughput performance, we migrate a 30 GB VM with 16
GB RAM over a WAN while running a memory workload.
To evaluate network transparency, we migrate a 15 GB VM
over the wide area while running a network workload.

To evaluate migration performance in our emulated edge
cloud, we run a workload that allocates a block of memory
about the size of the VM’s virtual memory (for a 16 GB VM,
we use 15 GB) which dirties a significant amount of mem-
ory pages to force the hypervisor to have to transfer the en-
tirety of RAM over the network. Unless otherwise stated, we
run 10 trials each with MPTCP and TCP and present aver-
ages. For our experiments evaluating network transparency,
we run an iperf client in San Jose while the VM hosts the
iperf server. We run experiments using both our approach
and the tunneling approach used by most existing WAN mi-
gration systems. To minimize the effect of congestion we
perform our experiments at night from 9:00 PM to 7:00 AM.
We report the average of 10 runs and 90 percent confidence
intervals.
Commercial Distributed Public Cloud. We provision sev-
eral bare-metal machines from IBM’s SoftLayer cloud, pic-
tured in Figure 6, and deploy our MPTCP-enabled hypervi-
sor and migration manager. While the SoftLayer cloud is
not a full-fledged edge cloud, it is nevertheless a distributed
commercial cloud offering multiple sites in North Amer-
ica from which we picked locations in San Jose, Dallas,
Toronto, and Montreal to function as our edge cloud loca-
tions. We use a separate bare metal machine in San Jose as
our client and the VM always starts in Montreal. We exam-
ine scenarios where the VM is migrated to Dallas and San
Jose. Our SoftLayer edge clouds have two 2.4 GHz Intel

Emulated WAN

Path 1 
Router

Path 2 
Router

Management 
Switch

Source 
Host

Destination 
Host

Figure 7: Lab-based Edge Cloud Testbed. A WAN is em-
ulated by connecting two servers to two routers running
dummynet.

E5-2620 processors with hyperthreading enabled. The sys-
tems have 64 GB RAM and 1 TB SCSI disk, and two Intel
10-GigE NICs.
Lab-based Edge Cloud Testbed. Since network bandwidth
and delay as well as VM allocation are hard to control in a
real production environment, we set up two controlled edge
sites connected by a WAN emulated by Dummynet [10].
This allows us to control the bandwidth, loss, and delay
while evaluating our system in a controlled environment.

The emulated Edge Cloud environment consists of four
PowerEdge R430 servers with 2.10GHz Intel E5-2620 v4
processors with two sockets and eight cores with hyperthread-
ing enabled. Each system has 64 GB RAM and one TB
SATA disks. We use two one GigE interfaces on each ma-
chine. Our network topology is illustrated in Figure 7.

We emulate WAN routers on two servers running FreeBSD
11.0 - STABLE and the Dummynet network emulator with
queue sizes of 8000 and 12000 KBytes. Our edge cloud lo-
cations plug directly into the routers, which forward all traf-
fic to their destinations. As packets flow through the routers,
dummynet applies preconfigured rules to alter the bandwidth
and delay for the tcp connections. We use these rules to con-
figure our desired network conditions.

4.2 Migrations in Distributed Public Cloud
Migrating a VM over MPTCP increases the effective band-

width available for migration, since it enables the transfer of
VM memory and disk state over multiple interfaces. Thus,
the choice of transport protocol used by the hypervisor for
VM migration can impact VM migration times.

We evaluate the migration time in our distributed public
cloud environment in Figure 8, which shows the migration
times when a VM of size 16 GB is moved between the Mon-
treal and San Jose locations. We performed a total of 195
migrations over a three day period. Each VM migration has
a choice of two paths (via the public and the private net-
work interface respectively). MPTCP is able to use both
these paths, and is also able to reduce the mean migration
time by almost 30% compared to using TCP alone.
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Figure 8: Migration times in the distributed public cloud
show high variance due to variable network bandwidths
between geographically separated data centers.

We see that TCP on a single path (TCP Path 1 in Fig-
ure 8) can sometimes outperform MPTCP if the path was
not congested, and sending data on this uncongested path us-
ing TCP overshadows some of the link-aggregation benefits
of MPTCP. We emphasize the adaptive nature of MPTCP—
while TCP on the manually selected “best” path may be
sometimes competitive with MPTCP, selecting this best path
may not be practical in edge clouds that see a high variance
in network characteristics. MPTCP is adapative in nature
and requires no manual path selection since it adaptively
sends more data on uncongested paths—we can see this from
the reduction in worst-case migration times compared to the
congested path (TCP Path 2) in Figure 8.

4.3 Migrations in Lab-based Edge Cloud
Since network bandwidth and latencies in a globally dis-

tributed edge cloud can vary over a wide range, we also
evaluate our migration approach in a lab-based edge cloud
testbed which emulates a wide range of network behavior.
Our setup allows us to run VM live migrations over an emu-
lated wide-area network similar to what you would see in an
edge cloud setup. We emulate network conditions of a WAN
in our local network by using the dummynet [10] emulator
to control bandwidth and latency.
Network Latency. We first analyze the effect of network
latency on migration times. Network latency can vary sig-
nificantly in an edge cloud since edge cloud locations can be
globally distributed, and the network latency is proportional
to speed-of-light delays between locations.

Figure 9 shows the migration time over a wide range of
round trip times (RTTs). We see that migration time with
MPTCP is roughly half of that with TCP—this is because
MPTCP utilizes both the physical network interfaces and
effectively double the available bandwidth. The migration
time with MPTCP is around 150 seconds compared to al-
most 300 seconds with TCP. For both MPTCP and TCP, the
effect of RTT on migration time is negligible. Migration
time depends on network throughput, since it involves bulk
data transfers—the hypervisor sends large batches of 4 KB
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Figure 9: Round trip times have no significant effect on
migration times. MPTCP is able to utilize both the net-
work interfaces and results in lower migration times.
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Figure 10: Migration time is roughly inversely propor-
tional to network bandwidth. MPTCP yields between
1.2-2X reduction in migration times.

pages on every iteration. Since both transport layer proto-
cols (MPTCP and TCP) are able to achieve the same network
throughput regardless of the round trip times, the migration
times are unaffected by the RTTs.
Network Bandwidth. Network bandwidth between differ-
ent locations of an edge cloud can also vary significantly. We
evaluate the effect of available bandwidth on the migration
times in Figure 10, with RTT kept constant at 60ms in all
cases. At a maximum one Gbps bandwidth, VM migrations
are about 1.2X faster with MPTCP. However, MPTCP shows
a pronounced reduction in migration times as the available
bandwidth declines. At 100 Mbps, migrations take about 15
minutes compared to 28 minutes with TCP—a significant
reduction of almost 2X. We emphasize that network band-
widths can be quite low in edge clouds because of geograph-
ically dispersed locations and inter-continental bandwidth
is expensive, thus minimizing bandwidth requirements is a
primary optimization goal when designing applications and
systems for edge clouds. In bandwidth constrained environ-
ments, MPTCP allows VMs to be migrated in half the time
that existing TCP-based approaches allow.
VM Size. Finally, the memory size of a VM can vary due to
the varying memory requirements of different applications.
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Figure 11: Migration Time vs VM Size. MPTCP allows
2x faster migrations for all large VM sizes.

We evaluate the impact of VM memory size on the migra-
tion time in Figure 11. MPTCP allows 2x faster migrations
for VMs larger than 8 GB or more, when compared to us-
ing TCP. We evaluate TCP on both interfaces individually,
and our results in Figure 11 show no noticeable difference
in the migration times due to the choice of interface. This
indicates that in our emulated network setup, MPTCP out-
performs TCP even over the best path.

4.4 WAN Optimized Pre-copy Algorithm
We next evaluate our WAN-optimized pre-copy algorithm

described in Section 3.3.2. To evaluate the viability of our al-
gorithm, we implement a model driven [25] virtual machine
migration simulator in python. The simulator evaluates both
our hot-skip approach and the default KVM sequential al-
gorithm by calculating the fraction of dirty and non-dirtied
pages of each migration round. The simulator then computes
the length of the iteration by taking the number of pages to
transfer over the available bandwidth. It performs these iter-
ations until a given stop and copy threshold is reached.

Figure 12 shows the migration times for different avail-
able network bandwidths for our wan-optimized hot-skip pre-
copy algorithm. Compared to the default QEMU migration
algorithm which sends all dirty pages in an iteration, our ap-
proach of skipping hot pages reduces the total migration time
by more than 20%. We also observe from Figure 12 that the
reduction in migration time with our hot-skip approach is
more pronounced in low bandwidth scenarios.

4.5 Disk Migration
So far we have looked at the migration times of the mem-

ory state of the VMs, and assumed that the virtual disk of
the VM is shared between the source and destination edge
cloud locations. Sharing disk state is common in environ-
ments where a virtual disk is network mounted on both loca-
tions. However, there are scenarios where the disk contents
(along with the memory contents) of a VM also need to be
migrated. Once the virtual disk is migrated, the migrated
VM can access it on the faster local disk on the destination,
instead of incurring a network round-trip for every disk ac-
cess. Thus disk migration is important in edge clouds to
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Figure 12: Our hot-skip pre-copy algorithm allows mi-
grations to finish more than 20% faster, especially in low-
bandwidth environments.
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Figure 13: Disk migration time with full-disk-copy.

minimize latency.
We evaluate disk migration by copying the entire virtual

disk of the VM along with memory state. In this full-disk-
copy approach, the migration times can significantly increase
due to the large amount of data transfer, since the size of vir-
tual disks can be in tens (or even hundreds) of GBs. We ob-
serve that using MPTCP consistently lowers migration times
by 15% or almost 10 minutes. We note that disk migration
is bounded by the disk bandwidth which can be significantly
lower than the network bandwidth, especially in a WAN en-
vironment. While MPTCP improves effective network band-
width, its effectiveness is reduced because of the bottleneck
caused by the low disk bandwidth.

We note that a further optimization can be made by using a
technique known as incremental-disk-copy where snapshots
are migrated prior to live migration and used as a base im-
age. This allows the live migration process to transfer only
the delta’s between the current image and the snapshot, thus
reducing the amount of data being sent over the network.

4.6 Network Transparency
We now look at how our approach handles network trans-

parency and the effect it has on throughput. We evaluate
migration performance when the VM is migrated from Mon-
treal to two different locations (San Jose and Dallas). In both



Figure 14: Iperf throughput when migrating from Mon-
treal to Dallas and San Jose. MPTCP achieves almost
2x throughput to Dallas and 10x throughput to San Jose
after migration compared to tunneling.

scenarios, the client is located in San Jose while the VM is
running the iperf server.

Figure 14 show our results when the VMs are migrated
to the Dallas and San Jose edge sites respectively. We ob-
serve that after migration, application throughput when us-
ing MPTCP is larger than what is achieved using a tunnel-
only solution. Both TCP and MPTCP yield approximately
the same throughput before and during the migration pro-
cess. However after the VM has been migrated to the des-
tination, there is a stark contrast in the throughput. When
migrated to Dallas, throughput with MPTCP is 1.8x that of
TCP. Similarly, after migrating to a different location (San
Jose), the difference in throughput is more than 13x.

We note that migration time, service downtime, and
throughput before and during migration are statistically iden-
tical under both approaches. This is expected since both
techniques are identical until the point that the client opens a
new MPTCP subflow with the VM using its new IP address.
We only see the performance and transparency benefits of
our MPTCP system after migration completes.

5. RELATED WORK
Our work is based off of and combines prior work on VM

live migration, multi-path TCP, and edge clouds.
Live Migration. Modern virtual machine live migration was
first presented in [13], which described Xen’s iterative pre-
copy migration algorithm that also forms the basis of our
approach. Live migration is implemented in almost all hy-
pervisors, including VMWare ESX [27].
WAN Migration. Migrating virtual machines over a wide
area network imposes additional challenges due to increased
network latencies and reduced bandwidths compared to LAN
environments. We also show that highly variable WAN band-
width presents additional challenges in migration. Wide-
area live migration of virtual machines is described in [40],
which also developed various optimizations such as page
and block compression to reduce network data transfer. Wide-
area live migration has also been used to move VMs between
cloud providers [36] to lower costs. Network transparency in
wide-area migration is maintained by using techniques such

as tunneling and software-defined networks. VMWare’s Xv-
Motion can also migrate VMs over long distances, and uses
network virtualization techniques to extend the layer 2 LAN
across two data centers. Tunneling and network virtualiza-
tion impose additional network latency since client requests
are first routed to the original source location of the VM.
Moving VMs closer to the clients to reduce latency is an im-
portant feature of edge-clouds, and tunneling increases la-
tency since it adds an additional wide-area hop between the
client and the new destination. In contrast, our approach re-
lies on using MPTCP without requiring any tunneling, and
thus it can reduce client latency by moving VMs closer to
the clients.
Migration with MPTCP. Some prior work has proposed
using MPTCP for VM migrations. [28] shows how to use
MPTCP to change the endpoints of the connection in the
context of middleboxes, and also proposes WAN VM migra-
tion as a potential use-case. Their approach relies on chang-
ing the MPTCP stack—unlike our approach which requires
no protocol changes.

Previous work [24] looks at combining hierarchical to-
ken bucket scheduling with multi-path TCP and SDNs while
looking at VM migration. Their emphasis is solely on mi-
grations within a LAN which does not apply to the WAN
context of edge clouds since it can not provide transparency
when the VM’s IP address changes across sites. Our ap-
proach is tailored for WAN migrations between edge cloud
locations—we provide network transparency, optimize the
VM pre-copy migration for WAN environments, and also
exploit MPTCP for virtual machine disk transfers. [37] has
looked at VM migrations with MPTCP and pre-assigning IP
addresses to lessen downtimes. They rely on a VPN for mi-
grations among non collaborative edge sites where as our ap-
proach functions over the public internet between edge cloud
locations. We enable MPTCP in both the VM and the hyper-
visor to enable faster migration times, provide more network
transparency and to optimize migrations for WAN environ-
ments.
Migration Optimizations. Virtual machine live migration
has two important metrics: the total migration time and the
downtime. A comprehensive empirical model of these met-
rics is provided in [25], which also identifies factors, such
as application page dirty rates, that affect migration perfor-
mance. The performance benefits of migration optimizations
such as page deduplication and compression are evaluated
in [26]. Recently, migration optimizations have been pro-
posed that use application hints (such as Java garbage col-
lection) to reduce the pages sent during iterative pre-copy [9,
20]. The overhead of storage migration can be reduced by
scheduling the transfer of storage blocks and taking advan-
tage of spatial and temporal locality [42].
Edge Cloud Migrations Live migration has found use in
many optimization tasks in edge clouds, and is one of the
fundamental mechanisms for managing applications in edge
clouds. [19] examines using live migrations to perform seam-
less handoffs between edge cloud locations as users move.
This approach relies on leveraging VM state at the destina-
tion as well as reducing overall data sent across the network



through techniques like deduplication, compression and VM
synthesis. Our system with MPTCP does not rely on exist-
ing state at the destination host and as such can be used to
lower migration time when migrating to new destinations.
VM Handoff can be viewed as complementary to our system
and may result in even lower migration times when used in
combination.
Multi-Path TCP. Multi-path TCP is proposed in [16], and
MPTCP has been used and evaluated in many contexts.
MPTCP in data center networks has been evaluated in [33,
32]. MPTCP has also found use in mobile environments,
where it allows multiple interfaces such as WiFi and cellu-
lar network to be used [31, 12, 22]. Our use of multi-path
TCP is novel in the sense that it combines both the through-
put and the network transparency advantages that MPTCP
provides. That is, we reduce the migration time because of
the improved bandwidth available under MPTCP as well as
reduce downtimes by instantly switching over to the other
interface.

Some prior work also leverages MPTCP to achieve end-
point transparency. [6] proposes a MPTCP enabled proxy
and middlebox for address transparency. We rely only on
end-host support and do not require middleboxes. The use
of Software Defined Networks has been proposed to provide
some of the address-transparency aspects of MPTCP [4].
However, our MPTCP-based approach does not depend on
the underlying network for address transparency.

6. CONCLUSION
In order to provide user mobility and nomadicity, edge

clouds must rely on VM live migration that is optimized
for WAN scenarios. Our migration approach that is tailored
to edge cloud environments, takes advantage of MPTCP to
speed up migrations and provide increased network trans-
parency for clients. We utilize the aggregate throughput pro-
vided by MPTCP to parallelize migration, thus reducing mi-
gration time. We also lower latency after migration by rely-
ing on MPTCP’s resilience properties to automatically switch
active network connections to the VM’s new address, thus
removing the need for a persistent tunnel. Our system intro-
duces a new iterative pre-copy algorithm for disk and mem-
ory, optimized for the lower bandwidths of edge clouds.

We have demonstrated our prototype’s performance on
both a distributed public cloud and a lab based edge cloud.
Our experiments show that our prototype reduces migration
time by up to 50% and in some scenarios increases clients
after-migration throughput by almost 6x compared to typi-
cal tunneling approaches.
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